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Global optimization on an evolving energy landscape
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Locating the global minimum of a complex potential energy surface is facilitated by considering a homo-
topy, namely, a family of surfaces that interpolate continuously from an arbitrary initial potential to the system
under consideration. Different strategies can be used to follow the evolving minima. It is possible to enhance
the probability of locating the global minimum through a heuristic choice of interpolation schemes and pa-
rameters, and the continuously evolving potential landscape reduces the probability of trapping in local
minima. In application to a model problem, finding the ground-state configuration and the energy of rare-gas
(Lennard-Jonesatomic clusters, we demonstrate the utility and the efficacy of this method.
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INTRODUCTION In the present work we follow both these strategies, and
show how homotopic deformation facilitates location of the
Global optimization probleml] can often be formulated global minimum in a model problem. Similaiso-called
in terms of finding the minimuntor maximun) of a multi-  “continuation”) homotopic methods have frequently been
dimensional potential energy surfa@ES. Such problems, employed in related situations, as for example, in finding
which occur in a variety of areas, are of considerable practiroots of polynomial equations in several variab[@$ or in
cal and theoretical intereg2]. The “energy landscapef3]  the mean-field dynamics in attractor neural netwdeis
paradigm is particularly useful when the potential energy Different global optimization methods frequently find op-
function is continuously varying with the physical configu- timal solutions by elimination, by seeking lower and lower
rations relevant to the problem. An example of such a situaminima. Trapping in local minima—and escape from these
tion is the protein-folding problerf4], namely, determining minima—is a major practical issue. A number of different
the native configuration of complex molecules given theirstrategies have been suggested in order to engineer an escape
atomic composition. A simpler variant is the determination offrom local minima. These include both techniques to allow
the ground state configuration of atomic or molecular clusfor large excursions in the phase space by the use of tem-
ters[5]. perature or similar auxiliary parametefsuch as simulated
In this article, we propose an alternative homotopyannealing[10] and its variant§11,12)) as well as methods
method to study such problems by a controlled deformatiorthat deform the potential energy surface. The diffusion equa-
of the potential energy surface. V; is the potential energy tion method 13] and the distance scaling methidd}] fall in
hypersurface under consideration, we study the landscapeghis latter class. Other methods utilize both strategies, as for
example the stochastic tunneling metHdd] where simu-
V(a)=(1—a)Vi+aV;, (1) lated annealing is performed on a surface where the barriers
are exponentially reduced so as to facilitate escape from lo-
cal minima, the landscape paving technique], or the
basin-hopping techniqufl?7] which replaces the potential
Jurface by a set of piecewise flat regions.
The present technique is in the class of optimization

O__’I_t - f the land i v ch i methods that exploit potential surface deformation to avoid
€ minima of the fandscapes continuously change wi rapping in local minima. The interpolation parameteror

@ apd n ordgr to traqk them, one of the two.stratetg!es Ahe switching function$i(t) smoothly convert one PES into
possible. Varying the interpolation parameterin a finite

. . another. The intermediate potentials are qualitatively not
nymber of st.eps,. a ;tandard technique such as conjugate g(?e'ry different from the asymptotic potential in terms of the
dient (CG) minimization[6] can be employed at each On number of minima and maxima, although the relative depths
the other hand, one can consideas a time-dependent func- 5y o rvatures are quite different. As we discuss below, this
tion such that the PES evolves according to feature contributes to efficiency of the present technique in
locating minima. The lowest energy achieved, when an en-
V() =[1-h(t)]Vi+h(t) Vs, (2 semble of suitably compact initial configurations is evolved,

is taken as the ground state prediction of this method.

with a a parameter. Given a choice of initial potenti4l,
this is a one-parameter family of potential energy surface
which smoothly evolves fronv; into V; as « varies from

where h(t) is suitably chosen withh(0)=0, and
lim,_th(t)—1. Over a time scal&, therefore, the potential
deforms from the initial to the desired potential energy sur-
face, and the evolving minima can be tracked, for example, The problem of minimum energy configuration determi-
by following the damped dynamics in this potential via mo- nation forN particle atomic clusters is computationally hard,
lecular dynamic§MD) simulation. and the validity of a global solution cannot, typically, be

APPLICATION
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TABLE |. Representative results using the MD version of the (number of ground state configurations
homotopy method for L4 and L}, as examples of magic and =

nonmagic clusters. The parameters &rey=0.5, for 10,000 trials
starting from random initial conditions.

g (total number of condensates

a condensate being a configuration such that all atoms are

Py within a single cluster. This is clearly a function ¢fand{.
h(t) LJig LIy, For the ground-state energy, comparison is made to the ex-
— isting benchmark calculations already available for Lennard-

1 (No switching 0.0 0.0 Jones clusterfL9).
! thp( & g'ggié 8'822? In the CG approachV; is taken to be8= ), (r;—r?)2, r?
sinf ' ' being the(randon) initial position for thejth atom. This
bqi 0.0044 0.0138 choice ofV; ensures that the initial configuration is teract
T global minimunfor the potential energy surface, E@) with
[tanht—10)+1]/2 0.0124 0.0176

a=0; B is a constant that tunes the curvature of the PES.
1—exp(~{cos(3¢) 0.0111 0.0041 The parameter is then varied from 0 to 1 ifNg discrete
steps; the result of the CG minimizatiowe follow the stan-
a o o dard method[6]) at each step is taken to be the starting
verified. Existing data for global minimld 9] are usually the  configuration for the CG minimization at the next value of
lowest minima as yet located” in all but the simplest cases. 4, |n this latter approach, therefore, the attempt is to allow
A variety of global optimization techniques have been apthe global minimum itself to evolve homotopically.
plied to this probleni{17,18 with differing degrees of suc-
cess.
For the most extensively studied such systems, namely, RESULTS

model rare-gas clusters, the PES is an additive pairwise
Lennard-Jone$LJ) interaction,

( o ) 12 o ) 6

The present application is intended to be illustrative rather
than exhaustive. We have systematically studied different
cluster sizes up t&N=40 and in all cases the calculated
ground-state energy and configuration matches the existing

' @ results exactly. This includes the difficult case of the 38-atom

cluster which is an interesting and important test for any

. . . _ optimization method20]. The number of minima increases

wherer;; is the distance between particleandj, ande,o oy nonentially with cluster sizg24]; for LJ; there are four

are the standard Lennard-Jones parameters. The potential &Ainima. while for L3 the number exceeds 12]. Detailed
ergy landscape varies greatly with the cluster size. NOtabl?esults,’which cIarifySsome aspects of the present technique,

difficult optimization problems in this regard are, for ex- for th £19 22 (MD _
ample, 38-, 75-, or 98-atom clusters, where the potential en?cr:eG)presented or the cases 919,22 (MD) and N=38

ergy surface has the so-called multiple funnel strucf@ge-

22). of switching, namely, in the sudden limit(t) = V¢, the sys-

In the mplementauon of thg M.D approach we prqceed 4%em quickly settles into the nearest a\?;ﬁ(al)ale rr:inimumybased
follows. V; is ta15<6en2to be a pairwise sum of harmonic tgrmson the level of damping introduced. By starting from an en-
V(rij) =(r; ~2P0) /2. We perform molecular dynamics gompie of injtial conditions, a variety of different minima are
S|mulgt|ons[23] of theN part'|cle system, with an additional reached but the probability of finding the true ground state is
damping term for each particle, essentially zero for large clusters. With an adiabatic switch

[9], the results are dramatically different. The continuous

Vf:i2<j V(rij)=2 4e

i<j

In the MD version of the present technique, in the absence

- - V(t) . evolution of the potential energy landscape is a key factor in
mri+yri+ T=0, i=1,... N, (4)  permitting escape from local minima. Only asymptotically
[

does the system come to rest, but until then, there is always
residual kinetic energy due to which the system avoids being
wherem is the mass of the particle and is the damping trapped by small barriers. Shown in Fig. 1 is the typical
coefficient. The internal time scale of interparticle vibrationsvariation of potential energyin units of €), which is non-
depends on the parameterso, ande. For a given switch- monotonic once the adiabatic switching is incorporated. Re-
ing functionh(t) (we have explored a variety of such func- gardless of the actual form of the switching, more than 85%
tions listed in Table )l the adiabatic time scale is set by the of all initially random configurations condense, except in the
parametel; the entire system dynamics thus has two extercase where the switching is applied to the repulsive term of
nal time scaleg ! andmy 1. In the limit y—o, our pro- the potential. Representative data are given in Table I.
cedure reduces to a steepest descent minimization on the As emphasized, the adiabatic optimization proposed here
evolving potential. The dynamics of the system is followedis heuristic. The optimal choice for the parameters for a

until a stationary configuration is reached. given cluster size depends on a number of features such as
In order to quantitatively assess the efficiency of this prothe interaction potential parameters and the inherent time
cedure, we define the measure scales. By scanning over reasonable values of the param-
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20 T TABLE II. Comparative analysis of the homotopy method and
/ basin hopping. For each methodl, initial configurations are
0 evolved to find the global minimum in 100 instances for thgglLJ
_________ cluster.N;, j=0,1,2 are the number of times the lowest three
minima are found in the two methods; the number of function and
-20 | L - . -
derivative calls neede(per initial condition are also indicated to
= . give an estimate of the computational effort involved.
i 40f
o Optimization Function Derivative
-60 - method N, No N; N calls calls
80l Basin 937674 100 239 941 3495 154
hopping
100 . . Homotopy 195690 100 4 173 9260 475
10 100 1000 10000 method

Number of iterations

FIG. 1. Typical variation of potential enerdin units of €) with
time for the condensation of ks, for the case of no switching, inside a sphere of radiuN(4)*>. In V,;, the parameteg
h(t)=1 (dashed ling and with switching(solid line) usingh(t) ~ =100. In our implementation of the basin-hopping algo-
=1-exp(=4t). rithm, coordinate displacements are random in the interval
[—0.3,0.3 and the temperature is taken to be 2. An overall
eters, it is possible to determine regions in parameter spad@nfining potential of the fornv .= Z;exd20(r;—a)],a=1
with a higher than average probability of reaching the ground+ (N/4)'* was added to prevent dissociation, and a standard
state. It also appears that adiabaticity is crucial since th&olak-Ribiere algorithm was used for the conjugate-gradient
probability of reaching the ground state increases substarinimization[6] with tolerance set between 1®and 10"
tially with decreasing;: Py is shown versug for the 19- The average computational effort required is a product of the
atom case in Fig. 2. number of trials needed in order to get to the ground state on
In the CG method of following minima during homotopy, average and the number of function and derivative calls per
the probability of reaching the global minimum is enhancedtrial. In our implementation of the algorithms, we find that
through the modification of the PES curvature. Sikgadds  the reduction in computational effort in locating the global
a uniform positive curvature at the intermediate stages, ifninimum through the homotopy method is about 40%. The
effectively suppresses or eliminates many barriers. To pere€lative efficiencies can, however, vary depending on the ac-
form some benchmarking of the advantage this gives, wé&ual choice of the various adjustable parameters in the two
present, in Table II, data pertaining to finding the globaltechniques. In either the MD or the CG version, configura-
minimum for Lkg Comparing the present method and thetiOl’lS that do not reach the global minimum still typically
basin-hopping technique. The three lowest minima are at erfend to find the lowest energy states, so that a by-product of

ergies —173.928, —173.252, and—173.134, respectively. this methodology is a considerably detailed map of the low
unigue to the present method.

0.6

SUMMARY

ooz | . | We have presented here a method for global optimization
| . . . . .
- ™ which relies on the guided evolution of the underlying land-
2 ] . * " scape. The methodology for finding minima on this surface
can vary, and in the examples presented here, we have used
o™ o.coew p I; . . 1 both the conjugate gradient technique as well as damped
u molecular dynamics(Dynamics in the landscape has been
™ incorporated in other techniques, for example, in genetic al-
gorithms[25].) As in other methods, apart from the global
1 minimum, we also obtain a detailed picture of the excitation
spectrum.
Within the context of cluster geometry determination it-
0 - self, several issues need to be addressed. The adiabatic
04 10 10.0
L method can be _shown to locate groun(_j states even when
there are bifurcations along the deformation pathy28}. Is
FIG. 2. Probability of reaching the ground sta,, as a func- it possible to design more efficient homotopic deformations?
tion of ¢ for h(t)=1—exp(—¢t), for the cluster L. What is the role o/; in controlling the efficiency?

0.004
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